Copied to
clipboard

G = C42.125D4order 128 = 27

107th non-split extension by C42 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.125D4, (C2×C8)⋊8Q8, C4⋊Q826C4, C2.5(C8⋊Q8), C4.15(C4×Q8), C42.167(C2×C4), C23.816(C2×D4), (C22×C4).304D4, C4.83(C22⋊Q8), C22.38(C4⋊Q8), C428C4.13C2, C22.4Q16.52C2, (C22×C8).411C22, (C2×C42).337C22, C22.103(C8⋊C22), (C22×C4).1427C23, C22.71(C4.4D4), C22.92(C8.C22), C2.25(C23.37D4), C2.25(C23.38D4), C2.5(C42.28C22), C2.15(C23.67C23), (C2×C4⋊Q8).16C2, C4⋊C4.100(C2×C4), (C2×C4).214(C2×Q8), (C2×C8⋊C4).36C2, (C2×C4).1367(C2×D4), (C2×C4⋊C4).98C22, (C2×C4).610(C4○D4), (C2×C4).441(C22×C4), (C2×C4).142(C22⋊C4), C22.302(C2×C22⋊C4), SmallGroup(128,725)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.125D4
C1C2C22C23C22×C4C2×C42C2×C8⋊C4 — C42.125D4
C1C2C2×C4 — C42.125D4
C1C23C2×C42 — C42.125D4
C1C2C2C22×C4 — C42.125D4

Generators and relations for C42.125D4
 G = < a,b,c,d | a4=b4=c4=1, d2=a2, ab=ba, cac-1=a-1b2, dad-1=a-1, cbc-1=dbd-1=b-1, dcd-1=bc-1 >

Subgroups: 276 in 138 conjugacy classes, 64 normal (18 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C2×Q8, C2.C42, C8⋊C4, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C4⋊Q8, C4⋊Q8, C22×C8, C22×Q8, C22.4Q16, C428C4, C2×C8⋊C4, C2×C4⋊Q8, C42.125D4
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C22⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, C2×C22⋊C4, C4×Q8, C22⋊Q8, C4.4D4, C4⋊Q8, C8⋊C22, C8.C22, C23.67C23, C23.37D4, C23.38D4, C42.28C22, C8⋊Q8, C42.125D4

Smallest permutation representation of C42.125D4
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 52 12 38)(2 49 9 39)(3 50 10 40)(4 51 11 37)(5 111 23 124)(6 112 24 121)(7 109 21 122)(8 110 22 123)(13 29 25 35)(14 30 26 36)(15 31 27 33)(16 32 28 34)(17 105 126 117)(18 106 127 118)(19 107 128 119)(20 108 125 120)(41 83 45 66)(42 84 46 67)(43 81 47 68)(44 82 48 65)(53 61 60 70)(54 62 57 71)(55 63 58 72)(56 64 59 69)(73 104 90 94)(74 101 91 95)(75 102 92 96)(76 103 89 93)(77 99 86 113)(78 100 87 114)(79 97 88 115)(80 98 85 116)
(1 95 35 87)(2 104 36 77)(3 93 33 85)(4 102 34 79)(5 67 118 60)(6 83 119 56)(7 65 120 58)(8 81 117 54)(9 94 30 86)(10 103 31 80)(11 96 32 88)(12 101 29 78)(13 100 52 91)(14 113 49 73)(15 98 50 89)(16 115 51 75)(17 71 110 43)(18 61 111 46)(19 69 112 41)(20 63 109 48)(21 82 108 55)(22 68 105 57)(23 84 106 53)(24 66 107 59)(25 114 38 74)(26 99 39 90)(27 116 40 76)(28 97 37 92)(42 127 70 124)(44 125 72 122)(45 128 64 121)(47 126 62 123)
(1 109 3 111)(2 112 4 110)(5 52 7 50)(6 51 8 49)(9 121 11 123)(10 124 12 122)(13 120 15 118)(14 119 16 117)(17 36 19 34)(18 35 20 33)(21 40 23 38)(22 39 24 37)(25 108 27 106)(26 107 28 105)(29 125 31 127)(30 128 32 126)(41 115 43 113)(42 114 44 116)(45 97 47 99)(46 100 48 98)(53 95 55 93)(54 94 56 96)(57 104 59 102)(58 103 60 101)(61 91 63 89)(62 90 64 92)(65 80 67 78)(66 79 68 77)(69 75 71 73)(70 74 72 76)(81 86 83 88)(82 85 84 87)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,52,12,38)(2,49,9,39)(3,50,10,40)(4,51,11,37)(5,111,23,124)(6,112,24,121)(7,109,21,122)(8,110,22,123)(13,29,25,35)(14,30,26,36)(15,31,27,33)(16,32,28,34)(17,105,126,117)(18,106,127,118)(19,107,128,119)(20,108,125,120)(41,83,45,66)(42,84,46,67)(43,81,47,68)(44,82,48,65)(53,61,60,70)(54,62,57,71)(55,63,58,72)(56,64,59,69)(73,104,90,94)(74,101,91,95)(75,102,92,96)(76,103,89,93)(77,99,86,113)(78,100,87,114)(79,97,88,115)(80,98,85,116), (1,95,35,87)(2,104,36,77)(3,93,33,85)(4,102,34,79)(5,67,118,60)(6,83,119,56)(7,65,120,58)(8,81,117,54)(9,94,30,86)(10,103,31,80)(11,96,32,88)(12,101,29,78)(13,100,52,91)(14,113,49,73)(15,98,50,89)(16,115,51,75)(17,71,110,43)(18,61,111,46)(19,69,112,41)(20,63,109,48)(21,82,108,55)(22,68,105,57)(23,84,106,53)(24,66,107,59)(25,114,38,74)(26,99,39,90)(27,116,40,76)(28,97,37,92)(42,127,70,124)(44,125,72,122)(45,128,64,121)(47,126,62,123), (1,109,3,111)(2,112,4,110)(5,52,7,50)(6,51,8,49)(9,121,11,123)(10,124,12,122)(13,120,15,118)(14,119,16,117)(17,36,19,34)(18,35,20,33)(21,40,23,38)(22,39,24,37)(25,108,27,106)(26,107,28,105)(29,125,31,127)(30,128,32,126)(41,115,43,113)(42,114,44,116)(45,97,47,99)(46,100,48,98)(53,95,55,93)(54,94,56,96)(57,104,59,102)(58,103,60,101)(61,91,63,89)(62,90,64,92)(65,80,67,78)(66,79,68,77)(69,75,71,73)(70,74,72,76)(81,86,83,88)(82,85,84,87)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,52,12,38)(2,49,9,39)(3,50,10,40)(4,51,11,37)(5,111,23,124)(6,112,24,121)(7,109,21,122)(8,110,22,123)(13,29,25,35)(14,30,26,36)(15,31,27,33)(16,32,28,34)(17,105,126,117)(18,106,127,118)(19,107,128,119)(20,108,125,120)(41,83,45,66)(42,84,46,67)(43,81,47,68)(44,82,48,65)(53,61,60,70)(54,62,57,71)(55,63,58,72)(56,64,59,69)(73,104,90,94)(74,101,91,95)(75,102,92,96)(76,103,89,93)(77,99,86,113)(78,100,87,114)(79,97,88,115)(80,98,85,116), (1,95,35,87)(2,104,36,77)(3,93,33,85)(4,102,34,79)(5,67,118,60)(6,83,119,56)(7,65,120,58)(8,81,117,54)(9,94,30,86)(10,103,31,80)(11,96,32,88)(12,101,29,78)(13,100,52,91)(14,113,49,73)(15,98,50,89)(16,115,51,75)(17,71,110,43)(18,61,111,46)(19,69,112,41)(20,63,109,48)(21,82,108,55)(22,68,105,57)(23,84,106,53)(24,66,107,59)(25,114,38,74)(26,99,39,90)(27,116,40,76)(28,97,37,92)(42,127,70,124)(44,125,72,122)(45,128,64,121)(47,126,62,123), (1,109,3,111)(2,112,4,110)(5,52,7,50)(6,51,8,49)(9,121,11,123)(10,124,12,122)(13,120,15,118)(14,119,16,117)(17,36,19,34)(18,35,20,33)(21,40,23,38)(22,39,24,37)(25,108,27,106)(26,107,28,105)(29,125,31,127)(30,128,32,126)(41,115,43,113)(42,114,44,116)(45,97,47,99)(46,100,48,98)(53,95,55,93)(54,94,56,96)(57,104,59,102)(58,103,60,101)(61,91,63,89)(62,90,64,92)(65,80,67,78)(66,79,68,77)(69,75,71,73)(70,74,72,76)(81,86,83,88)(82,85,84,87) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,52,12,38),(2,49,9,39),(3,50,10,40),(4,51,11,37),(5,111,23,124),(6,112,24,121),(7,109,21,122),(8,110,22,123),(13,29,25,35),(14,30,26,36),(15,31,27,33),(16,32,28,34),(17,105,126,117),(18,106,127,118),(19,107,128,119),(20,108,125,120),(41,83,45,66),(42,84,46,67),(43,81,47,68),(44,82,48,65),(53,61,60,70),(54,62,57,71),(55,63,58,72),(56,64,59,69),(73,104,90,94),(74,101,91,95),(75,102,92,96),(76,103,89,93),(77,99,86,113),(78,100,87,114),(79,97,88,115),(80,98,85,116)], [(1,95,35,87),(2,104,36,77),(3,93,33,85),(4,102,34,79),(5,67,118,60),(6,83,119,56),(7,65,120,58),(8,81,117,54),(9,94,30,86),(10,103,31,80),(11,96,32,88),(12,101,29,78),(13,100,52,91),(14,113,49,73),(15,98,50,89),(16,115,51,75),(17,71,110,43),(18,61,111,46),(19,69,112,41),(20,63,109,48),(21,82,108,55),(22,68,105,57),(23,84,106,53),(24,66,107,59),(25,114,38,74),(26,99,39,90),(27,116,40,76),(28,97,37,92),(42,127,70,124),(44,125,72,122),(45,128,64,121),(47,126,62,123)], [(1,109,3,111),(2,112,4,110),(5,52,7,50),(6,51,8,49),(9,121,11,123),(10,124,12,122),(13,120,15,118),(14,119,16,117),(17,36,19,34),(18,35,20,33),(21,40,23,38),(22,39,24,37),(25,108,27,106),(26,107,28,105),(29,125,31,127),(30,128,32,126),(41,115,43,113),(42,114,44,116),(45,97,47,99),(46,100,48,98),(53,95,55,93),(54,94,56,96),(57,104,59,102),(58,103,60,101),(61,91,63,89),(62,90,64,92),(65,80,67,78),(66,79,68,77),(69,75,71,73),(70,74,72,76),(81,86,83,88),(82,85,84,87)]])

32 conjugacy classes

class 1 2A···2G4A4B4C4D4E4F4G4H4I···4P8A···8H
order12···2444444444···48···8
size11···1222244448···84···4

32 irreducible representations

dim111111222244
type++++++-++-
imageC1C2C2C2C2C4D4Q8D4C4○D4C8⋊C22C8.C22
kernelC42.125D4C22.4Q16C428C4C2×C8⋊C4C2×C4⋊Q8C4⋊Q8C42C2×C8C22×C4C2×C4C22C22
# reps141118242422

Matrix representation of C42.125D4 in GL8(𝔽17)

115000000
116000000
0016150000
00110000
00000010
000041130
00001000
0000012316
,
160000000
016000000
001600000
000160000
000001600
00001000
0000131640
0000614613
,
712000000
1310000000
009150000
00780000
000016787
00000666
0000151187
000021434
,
815000000
79000000
009150000
00780000
000021434
00009021
0000811913
00000666

G:=sub<GL(8,GF(17))| [1,1,0,0,0,0,0,0,15,16,0,0,0,0,0,0,0,0,16,1,0,0,0,0,0,0,15,1,0,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,1,0,12,0,0,0,0,1,13,0,3,0,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,1,13,6,0,0,0,0,16,0,16,14,0,0,0,0,0,0,4,6,0,0,0,0,0,0,0,13],[7,13,0,0,0,0,0,0,12,10,0,0,0,0,0,0,0,0,9,7,0,0,0,0,0,0,15,8,0,0,0,0,0,0,0,0,16,0,15,2,0,0,0,0,7,6,11,14,0,0,0,0,8,6,8,3,0,0,0,0,7,6,7,4],[8,7,0,0,0,0,0,0,15,9,0,0,0,0,0,0,0,0,9,7,0,0,0,0,0,0,15,8,0,0,0,0,0,0,0,0,2,9,8,0,0,0,0,0,14,0,11,6,0,0,0,0,3,2,9,6,0,0,0,0,4,1,13,6] >;

C42.125D4 in GAP, Magma, Sage, TeX

C_4^2._{125}D_4
% in TeX

G:=Group("C4^2.125D4");
// GroupNames label

G:=SmallGroup(128,725);
// by ID

G=gap.SmallGroup(128,725);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,400,422,723,436,2019,248]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=a^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=b*c^-1>;
// generators/relations

׿
×
𝔽